Learning arm kinematics and dynamics.
نویسنده
چکیده
In this review I have discussed how the form of representation used in internal models of the motor apparatus affects how and what a system can learn. Tabular models and structured models have benefits and drawbacks. Structured models incorporate knowledge of the structure of the controlled motor apparatus. If that knowledge is correct, or close to the actual system structure, the structured models will support global generalization and rapid, efficient learning. Tabular models can play an important role in learning to control systems when either the system structure is not known or only known approximately. Tabular models are general and flexible. Techniques for combining these different representations to attain the benefits of both are currently under investigation. In the control of multijoint systems such as the human arm, internal models of the motor apparatus are necessary to interpret performance errors. In the study of movements restricted to one joint, the problem of interpreting performance errors is greatly simplified and often overlooked, as performance errors can usually be related to command corrections by a single gain. When multijoint movements of the same motor systems are examined, however, the complex nature of the control and coordination problems faced by the nervous system become evident, as well as the sophistication of the brain's solutions to these problems. Recent progress in the understanding of adaptive control of eye movements provides a good example of this (Berthoz & Melvill-Jones 1985). Experimental studies of the psychophysics of motor learning can play an important role in bridging the gap between computational theories of how abstract motor systems might learn and physiological exploration of how actual nervous systems implement learning. Quantitative analyses of the patterns of motor learning of biological systems may help distinguish alternative hypotheses about the representations used for motor control and learning. What a system can and cannot learn, the amount of generalization, and the rate of learning give clues as to the underlying performance architecture. It is also important to know the actual performance level of the motor system (Loeb 1983). Different proposed control strategies will be able to attain different performance levels, and the use of simplifying control strategies may be evident in the control and learning performance of motor systems.
منابع مشابه
Neuro-Controller with Simultaneous Perturbation for Robot Arm - Learning of Kinematics and Dynamics without Jacobian
We report two control schemes for a two-link robot arm system using a neuro-controller. We adopted the simultaneous perturbation learning rule for a neuro-controller. Ordinary gradient type of learning rule uses Jacobian of the objective system in a direct control scheme by a neural network. However, the learning rule proposed here requires only two values of an error function. Without Jacobian...
متن کاملAn LPV Approach to Sensor Fault Diagnosis of Robotic Arm
One of the major challenges in robotic arms is to diagnosis sensor fault. To address this challenge, this paper presents an LPV approach. Initially, the dynamics of a two-link manipulator is modelled with a polytopic linear parameter varying structure and then by using a descriptor system approach and a robust design of a suitable unknown input observer by means of pole placement method along w...
متن کاملLearning Motor Control for Simulated Robot Arms
Controlling a high degree of freedom humanoid robot arm to be dextrous and compliant in its movements is a critical task in robot control. The dynamics of such flexible and light manipulators have a highly non-linear nature, making analytical closed form solutions using rigid body assumptions inappropriate. In this thesis, we use Locally Weighted Projection Regression to learn online the invers...
متن کاملKinematics and Dynamics of two Cooperating Robots in Spatial Moving of an Object
The kinematics and dynamics of two industrial cooperating robots are presented in this paper. The NOC (natural orthogonal complement) method is used to derive the dynamical equations for the motion of two cooperating robots. The joint torques of the two robots are determined based on the optimization techniques in order to obtain unique solution for joint torques. To this end, minimizing the cr...
متن کاملModels with Biological Relevance to Control Anthropomorphic Limbs: A Survey
This paper is a review of different approaches and models underlying the voluntary control of human hand-arm movement. These models, dedicated to artificial movement simulation with application to motor control, robotics and computer animation, are categorized along at least three axis: Direct vs. Inverse models, Dynamics vs. Kinematics models, Global vs. Local models. We focus on sensory-motor...
متن کاملModeling kinematics and dynamics of human arm movements.
A central problem in motor control relates to the coordination of the arm's many degrees of freedom. This problem concerns the many arm postures (kinematics) that correspond to the same hand position in space and the movement trajectories between begin and end position (dynamics) that result in the same arm postures. The aim of this study was to compare the predictions for arm kinematics by var...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annual review of neuroscience
دوره 12 شماره
صفحات -
تاریخ انتشار 1989